Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells.
نویسندگان
چکیده
BACKGROUND Promoting survival of transplanted cells or endogenous precursors is an important goal. We hypothesized that a novel approach to promote vascularization would be to create injectable microenvironments within the myocardium that recruit endothelial cells and promote their survival and organization. METHODS AND RESULTS In this study we demonstrate that self-assembling peptides can be injected and that the resulting nanofiber microenvironments are readily detectable within the myocardium. Furthermore, the self-assembling peptide nanofiber microenvironments recruit progenitor cells that express endothelial markers, as determined by staining with isolectin and for the endothelial-specific protein platelet-endothelial cell adhesion molecule-1. Vascular smooth muscle cells are recruited to the microenvironment and appear to form functional vascular structures. After the endothelial cell population, cells that express alpha-sarcomeric actin and the transcription factor Nkx2.5 infiltrate the peptide microenvironment. When exogenous donor green fluorescent protein-positive neonatal cardiomyocytes were injected with the self-assembling peptides, transplanted cardiomyocytes in the peptide microenvironment survived and also augmented endogenous cell recruitment. CONCLUSIONS These experiments demonstrate that self-assembling peptides can create nanofiber microenvironments in the myocardium and that these microenvironments promote vascular cell recruitment. Because these peptide nanofibers may be modified in a variety of ways, this approach may enable injectable tissue regeneration strategies.
منابع مشابه
Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers.
Endothelial cells can protect cardiomyocytes from injury, but the mechanism of this protection is incompletely described. Here we demonstrate that protection of cardiomyocytes by endothelial cells occurs through PDGF-BB signaling. PDGF-BB induced cardiomyocyte Akt phosphorylation in a time- and dose-dependent manner and prevented apoptosis via PI3K/Akt signaling. Using injectable self-assemblin...
متن کاملThe Effect of Self-Assembling Peptide RADA16-I on the Growth of Human Leukemia Cells in Vitro and in Nude Mice
Nanofiber scaffolds formed by self-assembling peptide RADA16-I have been used for the study of cell proliferation to mimic an extracellular matrix. In this study, we investigated the effect of RADA16-I on the growth of human leukemia cells in vitro and in nude mice. Self-assembly assessment showed that RADA16-I molecules have excellent self-assembling ability to form stable nanofibers. MTT assa...
متن کاملInstructive nanofiber scaffolds with VEGF create a microenvironment for arteriogenesis and cardiac repair.
Angiogenic therapy is a promising approach for tissue repair and regeneration. However, recent clinical trials with protein delivery or gene therapy to promote angiogenesis have failed to provide therapeutic effects. A key factor for achieving effective revascularization is the durability of the microvasculature and the formation of new arterial vessels. Accordingly, we carried out experiments ...
متن کاملStraightforward and Cost-Effective Production of RADA-16I Peptide in Escherichia coli
Background: RADA16I represents one of promising hydrogel forming peptides. Several implementations of RADA16I hydrogels have proven successful in the field of regenerative medicine and tissue engineering. However, RADA16I peptides used in various studies utilize synthetic peptides and so far, only two research articles have been published on RADA16I peptide recombinant producti...
متن کاملDense surface functionalization using peptides that recognize differences in organized structures of self-assembling nanomaterials.
We obtained novel peptides that selectively bind to self-assembling peptide nanomaterials from a random peptide library displayed on phages. Affinity-dependent peptide screening gave phage clones displaying peptides with selective affinities against two kinds of highly networked nanofibers constructed of β-sheet peptides. Both peptide nanofibers have similar primary structures. Binding analyses...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 111 4 شماره
صفحات -
تاریخ انتشار 2005